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Introduction 
 
The Watershed Investment Tool (WIT) is a modular wildfire risk assessment and fuels 
reduction prioritization system designed for the Peaks to People Water Fund (hereafter 
Peaks to People). The core functions are aimed at quantifying wildfire risk to water 
supplies and prioritizing the locations and type of fuels reduction treatments to minimize 
risk. It also includes assessment workflows to calculate performance metrics on the 
modeled benefits of past and planned fuel treatments. The modeled performance metrics 
include several co-benefits of fuels reduction for source water protection like risk 
mitigation to structures in the wildland urban interface, critical wildlife habitat, and 
recreational assets, among others. The combined capabilities allow for program-level 
prioritization of fuels reduction work across large watersheds, accounting of implemented 
project accomplishments, and evaluating the potential benefits of proposed projects. 
Several of the intermediate spatial and tabular products also have utility for project-level 
planning. 
 
The core water supply and co-benefits risk assessments that underly the WIT are rooted in 
established methods for wildfire risk assessment (Finney 2005; Scott et al. 2013) that 
conceive of risk as the product of fire likelihood and fire consequences. Fire consequences 
are quantified in this framework using a combination of fire modeling to characterize the 
intensity of disturbance with an effects assessment to translate fire intensity into 
ecological, social, or economic net value change. Quantifying risk therefore requires 
modeling to characterize fire likelihood, fire behavior, and effects, which form the wildfire 
risk triangle (Figure 1). Details on data sources and modeling methods used in our 
assessments are provided later in the user guide.  
 

 
Figure 1: Wildfire risk triangle adapted from Scott et al. (2013). 

 
Throughout the user guide and associated WIT products, we make use of the terms 
conditional and expected net value change. Expected Net Value Change (eNVC) is a whole 
actuarial measure of risk incorporating the probability of fire occurrence. Conditional Net 
Value Change (cNVC) refers to the predicted change in value conditional on (or given) fire 
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occurrence. We highlight both conditional and expected metrics in the WIT because there 
are some locations on the landscape where models suggest fire likelihood is low, but 
consequences are high. These measures should be considered in tandem to understand the 
relative contributions of likelihood and consequences to risk.  
 
Unique benefits of the WIT  
 
Wildfire risk assessments often account for wildfire risk to multiple highly valued resources 
and assets (HVRAs) using relative measures of effects on a scale from -100 for total loss to 
+100 for radical gain (Scott et al. 2013). Consistently valuing effects on a relative scale 
facilitates combining the resulting measures of risk for each HVRA into a composite 
measure of total risk based on management priorities or social values (Scott et al. 2013). 
This approach is well-suited for the style of multi-resource management used by public 
agencies, but a downside of this approach is that relativized measures of risk do not clearly 
communicate risk in absolute terms such as the expected sediment delivery to a reservoir 
and associated costs. Peaks to People sought for the WIT to measure risk in monetary 
terms, as much as possible, to foster the view that proactive mitigation in watershed 
management is a financial investment with transparent benefits and costs. The WIT takes a 
detailed approach to quantifying wildfire risk to water supplies in monetary terms 
motivated by earlier efforts in California (Buckley et al. 2014; Elliot et al. 2016). Where 
possible, the co-benefits of source water mitigation measures are also valued in dollars. 
 
Use of wildfire risk assessments in land and watershed management is now commonplace, 
but it is rare that these assessments go beyond characterizing baseline conditions to plan 
efficient mitigation programs with analysis of fuel treatment effectiveness, opportunities, 
and costs. Risk mitigation is quantified in the WIT by modeling the primary effects of fuel 
treatments on the input fuels data to the risk assessment and differencing pre- and post-
treatment estimates of risk. This approach can be used to compare the effectiveness of 
alternative treatment types (e.g., thinning versus prescribed fire) and to understand how 
treatment effectiveness differs across the landscape due to variation in biophysical 
conditions. Major fuel treatment constraints are quantified with spatial models of fuel 
treatment feasibility and cost. The WIT combines spatially explicit measures of fuel 
treatment risk mitigation, feasibility, and cost to optimize the location and type of 
treatment to minimize risk. At the large watershed scale, this is accomplished with a 
technology called linear optimization to sort through the many location and treatment type 
combinations. Intermediate products of the analysis – such as the estimated cost-
effectiveness of risk reduction – convey similar information at a higher spatial resolution 
for project level planning and evaluation.  
 
Assessing wildfire risk to water supplies and optimizing fuel treatment location and type 
are data and model intensive processes. The remainder of the user guide is dedicated to 
explaining the technical implementation of these processes in the WIT. Those interested in 
only a science summary of the process are referred to Gannon et al. (2019). 
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WIT Modeling Workflow 
 
The WIT is constructed in three modules to address the ordered tasks of assessing wildfire 
risk to water supplies, planning an efficient mitigation program, and evaluating the 
performance of completed or candidate projects.  
  
Water Supply Risk Assessment 
 
The WIT uses a linked model approach to quantify wildfire-water supply risk in terms of 
expected sediment impact costs to water supplies (Figure 2). This module also estimates 
post-treatment risk for any candidate fuel treatments. Several of the intermediate products 
are also made available for additional data viewing and analysis. 
 
Process summary 
 
Burn probability, modeled with the large fire simulator (FSim; Finney et al. 2011) by Short 
et al. (2020), is used to characterize fire likelihood and how it varies across the watersheds. 
Crown fire activity modeled with FlamMap 5.0 (Finney et al. 2015) is used as a proxy for 
burn severity by mapping surface, passive crown, and active crown fire to low, moderate, 
and high severity, respectively. Post-fire hillslope erosion is then modeled with a 
Geographic Information System (GIS) implementation (Theobald et al. 2010) of the Revised 
Universal Soil Loss Equation (RUSLE; Renard et al. 1997) by altering cover and soil 
erodibility factors to reflect post-fire conditions (Larsen and MacDonald 2007). An 
empirical model of post-fire hillslope sediment delivery ratio (Wagenbrenner and 
Robichaud 2014) is used to predict how much of the eroded sediment is delivered to the 
stream and a conceptual model of channel sediment delivery ratio (Frickel et al. 1975), 
adapted to the channel types in the watersheds, is used to predict the total sediment 
delivery to the affected downstream water supplies. Water supply sediment exposure is 
quantified in metric tons (or megagrams [Mg]) and translated to a monetary value of 
impact with stakeholder defined sediment impact costs in USD per Mg of sediment. Data 
and modeling details are presented in Appendix I.  
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Figure 2: The wildfire-water supply risk assessment uses modeled crown fire activity as a proxy for burn severity 
to modify cover and soil variables in the Revised Universal Soil Loss Equation (RUSLE) to estimate post-fire 
hillslope erosion, which is then routed off hillslopes and down channels to estimate sediment delivery to water 
supplies. Sediment yield is then combined with stakeholder-defined sediment impact costs to measure the 
conditional impact costs of fire, which are combined with burn probability to calculate the expected sediment 
impact costs.  

 
The wildfire-water supply risk assessment is implemented in the WIT with a combination 
of pre-processed and dynamic inputs designed to simplify the user experience and reduce 
computing needs. Several pre-processing steps are performed to generate a customized 
watershed network for the sediment transport modeling. All the baseline (pre-fire) inputs 
to RUSLE are pre-processed using ArcGIS 10.3 (ESRI 2015). See Appendix I for more 
details. The dynamic inputs to the model provide the ability to add or remove water 
supplies from the risk assessment and to modify their sediment impact costs. 
 
User input 
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The moderate resolution National Hydrography Dataset Plus watershed network 
(NHDPlus; USEPA and USGS 2012) is used to represent the spatial topology between 
upland sediment sources and downstream water supplies via their connecting overland 
and channel flow paths. Overland flow paths are represented with pre-processed terrain 
analysis of a digital elevation model as described in Appendix I. The sediment contributed 
from each of many catchments (sub-watersheds) is routed through the flowline (channel) 
network to any downstream water supplies as indicated in Figure 3. 
 
 

 
Figure 3: Simplified example of the NHDPlus network topology. The matching catchment (i) and flowline (j) 
indices are used to associate upland sediment sources with their corresponding connections to the stream 
network. Water supplies, which we index in this example with k, are referenced to the appropriate flowline 
endpoint in the network. 

 
The user can add or remove water supplies from the risk assessment by modifying the 
infrastructure connections table (Table 1). This table specifies the name of the 
infrastructure component and the associated flowline(s) that best represent its 
connectivity to the NHDPlus watershed network. The flowline identifier (COMID) can be 
identified by viewing the flowline feature class from the input geodatabase in a GIS. 
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Table 1: Example of the infrastructure connections table specifying the NHDPlus flowline that each feature of 
concern is connected to. When appropriate, features can be represented by multiple flowlines (e.g. Carter Lake). 

Feature of Concern (FoC) COMID 

BARNES DITCH 12808 

BARNES MEADOW RES 2900901 

BIG BEAVER RES 999000002 

CARTER LAKE RES 13672 

CARTER LAKE RES 13774 

CHAMBERS LAKE RES 2900897 

COMANCHE RES 2900919 

DILLE TUNNEL 13544 

DIXON CANON RES 999000004 

EAST PORTAL RESERVOIR 999000008 

 
The user can also modify the sediment impact costs (USD per Mg of sediment) assigned to 
the water supply infrastructure using the sediment costs table (Table 2). The pre-
configured values were developed in a collaborative process with input from the city 
utilities of Fort Collins, Greeley, and Loveland and the Northern Water Conservancy District 
(Northern Water). Representatives from each agency rated the significance of sediment 
impacts to their infrastructure on a scale from 0 for no impact to 1 for highest level of 
impact. The impact costs were determined by summing the city utilities’ impact ratings and 
multiplying them by baseline impact costs of 4, 8, and 15.6 USD Mg-1 for primarily 
agricultural diversions, primarily drinking water diversions, and reservoirs, respectively. 
Setting a sediment impact cost to zero in this table is equivalent to removing it from the 
infrastructure connections table; this method is preferred when the goal is to narrow the 
focus of the assessment to a subset of water supplies.  
 
Table 2: Example of the sediment costs table specifying the sediment impact cost to each feature of concern in 
USD per Mg (metric ton). The feature of concern names must exactly match those used in the infrastructure 
connections table. An alias field is also provided as an option to abbreviate the names in the summary graphics. 

Feature of Concern (FoC) Alias Cost per Ton (CostPerTon) 

BARNES DITCH BARNES DITCH 8.0 

LOVELAND PIPELINE LOVELAND PIPELINE 1.6 

GEORGE RIST DITCH GEORGE RIST DITCH 0.0 

DILLE TUNNEL DILLE TUNNEL 5.0 

MARY S LAKE AT ESTES PARK MARY'S LAKE AT ESTES PARK 35.9 

EAST PORTAL RESERVOIR EAST PORTAL RES 37.5 

PINEWOOD RESERVOIR PINEWOOD RES 32.8 

LAKE ESTES LAKE ESTES 34.4 

CARTER LAKE RES CARTER LAKE RES 34.4 

POUDRE VALLEY CANAL POUDRE VALLEY CANAL 1.6 

 
Running the model 
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The model first configures the watershed network based on the provided water supply 
infrastructure connections and values. It then combines the modeled crown fire activity 
from FlamMap with the pre-processed RUSLE inputs to estimate post-fire increase in 
erosion for the baseline and any post-treatment fuel scenarios. The post-treatment fuel 
scenarios are described in further detail in the fuel treatment optimization section. 
Sediment delivery to water supply infrastructure is then predicted by combining hillslope 
and channel sediment delivery ratio models. Mass of sediment delivered to infrastructure 
is then linked to the sediment impact costs (Table 2) to quantify the conditional impacts of 
fire in monetary terms. In the final step, conditional impacts are weighted by burn 
probability to estimate risk. Several intermediate products including raster layers of post-
fire erosion, sediment delivery to streams, connectivity to water supplies, conditional 
water supply impacts, and water supply risk are saved to the output folder for viewing and 
critique in a GIS. These same products are also mapped for a quick inspection of the results. 
 
Results 
 
The model outputs include raster GIS files and static maps for viewing and critiquing the 
results of the water supply risk assessment (Figure 4). Advance users can load the raster 
data into a GIS for custom mapping or analysis. A set of static maps are also produced to 
make viewing the results convenient for users with less GIS skills. A common theme for 
maps is that impacts are mapped to the source locations to support watershed 
management planning. Risk is accounted for by water supply in the results for the later fuel 
treatment optimization module. 
 

 
Figure 4: Outputs of the water supply risk assessment include raster GIS files and static maps for viewing and 
critiquing the results. 

 
The first and most important output to critique is the sediment retention value map (Figure 
5), which translates the two user inputs (Table 1; Table 2) into a spatial representation of 
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watershed value. The values in this map should be interpreted as the avoided downstream 
cost if a metric ton (Mg) of sediment were retained in each catchment. Critique the map to 
make sure all water supplies are connected to the network and valued properly. The next 
two maps summarize the erosion and hillslope sediment transport model results for 
median rainfall conditions (Figure 6) to communicate how the components of the model 
combine to influence the final risk measures and for the interested user to compare the 
results to published studies. The final two maps present the conditional wildfire impacts 
and risk to water supplies (Figure 6), which relate the predicted mass of sediment 
delivered to water supplies to the assigned sediment impact costs. The risk map also 
incorporates the likelihood of each source pixel burning. The native units for both these 
data products are USD ac-1, but they are presented in relative terms here for ease of 
communication with diverse audiences. All else equal, areas with high risk will be 
identified as priorities for fuels reduction treatments in the later fuel treatment 
optimization module. 
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Figure 5: The sediment retention value map combines the channel sediment delivery ratio model and the 
sediment impact costs to map the value of retaining a metric ton of sediment in each catchment. Water supplies 
are represented as black dots with the size corresponding to the assigned impact cost. 
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Figure 6: Post-fire hillslope erosion (TOP LEFT) and sediment delivery to streams (TOP RIGHT) predictions 
account for three-years of increased gross sediment production. Units are Mg ha-1 to facilitate comparisons with 
published studies. Conditional (BOTTOM LEFT) and expected (BOTTOM RIGHT) impacts to water supplies are 
calculated by relating the mass of sediment delivered to water supplies to their assigned impact costs.  
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Fuel Treatment Optimization 
 
The WIT optimizes the location and type of fuel treatment using linear optimization, which 
is well-suited to evaluating a large set of candidate decision units based on their cost-
effectiveness and adherence to planning constraints. The optimization module also 
produces several intermediate raster products that are made available for additional data 
viewing and analysis. 
 
Process summary 
 
The linear optimization model is designed to maximize water supply risk reduction 
(minimize risk) for a set of decision units representing the amount of treatment to allocate 
(ac) by location and type (Figure 7). The detailed mathematical formulation is provided in 
Appendix II. The decision units are evaluated in terms of their cost-effectiveness at 
reducing risk by assigning each treatment location and type the average treatment risk 
reduction (USD ac-1) and cost (USD ac-1) within the unit. NHDPlus (USEPA and USGS 2012) 
catchments are used as the treatment units, which vary in size from 0.5-8,800 ac with a 
mean of 650 ac in Northern Colorado. Due to variable conditions within the catchments, 
mean risk reduction and cost calculations are limited to the area modeled as feasible and 
effective for each treatment type. In this context, effective means lowers fire severity at 
least one category. Risk reduction is automatically calculated by treatment type from the 
water supply risk assessment outputs. Treatment feasibility and cost estimates are 
provided as raster surfaces by the analyst; the modeling for Northern Colorado is described 
in Appendix II. Three main constraints are considered in the model. The most important is 
that spending cannot exceed the total program budget (USD). Treatment is also limited at 
the catchment-level to the total area feasible by treatment type as well as the combined 
area feasible for all treatment types. This allows multiple treatment types to be assigned to 
the same unit so long as their extents do not overlap. The primary output of the 
optimization model is a treatment plan specifying the area assigned to each location and 
treatment type and the associated level of predicted risk reduction. Raster cost-
effectiveness surfaces are also generated for each treatment type by dividing risk reduction 
by treatment cost. 
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Figure 7: Conceptual diagram summarizing how information is synthesized in linear optimization to prioritize 
treatment location and type to minimize risk. 

 
User input 
 

  
 
Three controls are provided to the user. The first is a treatment specifications table (Table 
3).  This is used to adjust the treatment types considered in the model and data sources 
used to represent their risk reductions, feasibilities, costs, and how outputs are labeled. 
GeoTIFF is the required format for raster inputs. The user can also modify a variable 
(MaxBudgetProp) to limit the proportion of the budget (0-1) that can be allocated to each 
treatment type to deal with unrealistic allocations. The model formulation requires the 
user to specify a program budget to constrain spending to. Two options are provided to 
specify the budget(s) to explore. The first is a budgets table (Table 4) that requires at least 
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one positive budget value (in USD) to run the model. Multiple values can be provided on 
separate rows to generate treatment plans at multiple budget levels with a single run. The 
second is a risk reduction percentages table (Table 5) that has equivalent function. The 
default is to use budgets, but the percentage option can be selected with the toggle switch. 
Size constraints can be imposed by entering values into the text boxes in the interface; 
treatment units with less feasible area than the minimum project size will not be 
considered for the treatment plan and catchment-level treatment allocations will not 
exceed the specified maximum project size. 
 
Table 3: Treatment specifications table. PT_Risk = post-treatment risk raster (USD ac-1). T_Cost = treatment cost 
raster (USD ac-1). T_Feas = treatment feasibility raster (0=infeasible;1=feasible). MaxBudgetProp = maximum 
budget proportion (value between 0 and 1). FB_Code = fire behavior code (unique name to associate fire 
modeling results and to tag model outputs with). 

Treatment PT_Risk T_Cost T_Feas MaxBudgetProp FB_Code 

Thin thin_eNVC.tif mocost.tif mofeas.tif 1 thin 

Rx fire RxFire_eNVC.tif Rxcost.tif Rxfeas.tif 1 RxFire 

Complete comp_eNVC.tif mRxcost.tif mofeas.tif 1 comp 

 
Table 4: Budgets table. Budget = budget(s) to run the model at. A treatment plan will be constructed for each 
specified budget. Commas are shown here for ease of reading, but the actual file should include the values as raw 
numbers instead of formatted text. Priority = text name for the budget scenario for later mapping. Lower 
budgets correspond to higher treatment priority. 

Budget Priority 

10,000,000 Highest 

50,000,000 Higher 

100,000,000 High 

200,000,000 Moderate 

 
Table 5: Risk reduction percentages table. PerRed = percentage(s) of risk reduction to run the model at. A 
treatment plan will be constructed for each specified percentage. Priority = text name for the percentage 
scenario for later mapping. Lower percentages correspond to higher treatment priority. 

PerRed Priority 

5 Highest 

10 Higher 

15 High 

20 Moderate 

 
The most important inputs to the optimization model are the raster surfaces of treatment 
risk reduction, cost, and feasibility. A brief description of how these are generated is 
provided here with details reserved for Appendix II. Risk reduction estimates are 
generated in the WIT by providing modeled crown fire activity for each candidate 
treatment as input to the previously described water supply risk assessment module. The 
risk assessment module identifies the candidate treatments to evaluate using the treatment 
specifications table (Table 3). Post-treatment risk is then subtracted from baseline risk in 
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the optimization module to estimate risk reduction in USD ac-1 over a 25-year planning 
period. Treatment cost surfaces should have units of USD ac-1. For Northern Colorado, 
thinning costs are estimated to increase with distance from roads and slope steepness with 
a function that predicts costs between 2,500 and 10,000 USD ac-1. Prescribed fire costs are 
estimated at a flat rate of 1,000 USD ac-1. The cost of a complete treatment combining 
thinning and prescribed fire is calculated as the sum of thinning and prescribed fire costs. 
Here, feasibility refers to a binary layer depicting where a given treatment is possible (1) or 
not possible (0) based on hard constraints. Accessibility and operability constraints are 
already factored into the cost estimates. All treatments are restricted to forested areas. 
Thinning treatments are further limited from areas protected with wilderness and upper 
tier roadless designations. Prescribed fire is constrained to frequent-fire forests greater 
than 250-m away from structures in the wildland-urban interface. 
 
Running the model 
 
The model first reads in the spatial inputs and then summarizes treatment risk reduction, 
cost, and feasibility for each treatment type and unit. As previously mentioned, estimates of 
average risk reduction and cost are limited to the area feasible for that treatment type. 
Prior to formulating the model, any decision units with less feasible area than the minimum 
project size are removed from consideration and any units with more than the maximum 
project size are constrained the maximum by adjusting the feasible area in the unit. 
Optimization is performed with the free lp_solve program 
(http://web.mit.edu/lpsolve_v5520/doc/index.htm), which requires the data be 
manipulated into vector and matrix form to describe the objective function values and 
constraints for each decision unit. An avoided impact analysis is performed across the full 
range of possible budgets to communicate how risk reduction and treatment type 
allocations will vary at untested budget levels. If the risk reduction percentage option is 
selected, the results of the avoided impact analysis are used to identify the budget needed 
to meet the risk reduction goal. The module then solves the linear program for each budget 
level and saves the associated treatment plan describing the area assigned to each 
treatment type and unit. Risk reduction and treatment allocation by budget level is also 
summarized in a table.  
 
Results 
 
The model outputs include tabular and vector GIS files (shapefiles) of the optimal 
treatment plan for each budget, a summary table of results by budget, and a figure 
summarizing the results of the avoided impact analysis (Figure 8).  
 

http://web.mit.edu/lpsolve_v5520/doc/index.htm
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Figure 8: Outputs of the fuel treatment optimization include tabular and vector GIS files (shapefiles) depicting 
the optimal treatment plan for each budget, a treatment priority shapefile, a summary table of results by budget, 
and the avoided impact analysis results. Budget levels (USD) appear in the treatment plan file names. 

 
The optimal treatment plan is communicated in a long-form table (Table 6) and a wide-
form shapefile (Figure 9). In the long-form table, each spatial treatment unit (UID field) will 
have multiple rows corresponding to the number of treatment types considered in the 
assessment (Table 3). The selected locations and treatment types can be identified by 
filtering for decision units with allocated treatment (> 0 in Acres field). The treatment type 
codes correspond to the order that treatments are presented in Table 3. The optimal 
treatment plan is also communicated in a shapefile with a wide-form attribute table (Figure 
9). Only treatment units selected by the model appear in the output. The treatment priority 
shapefile flattens the treatment plans for all budgets and assigns each catchment the 
highest priority level (from Table 4 or Table 5) that it is selected for treatment at. 
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Table 6: Optimal treatment plan table. UID = unique identifier for treatment unit. FEATUREID & GRIDCODE = 
unique identifiers for NHDPlus catchments. TotFeasAcre = total feasible acres in catchment for any treatment 
type. FeasAcre = feasible acres in catchment for specified treatment type. RedPerAcre = average treatment risk 
reduction (USD ac-1). CostPerAcre = average treatment cost (USD ac-1). TrtType = numerical code corresponding 
to row numbers in Table 3. Acres = planned allocation of treatment. 

UID FEATUREID GRIDCODE TotFeasAcre FeasAcre RedPerAcre CostPerAcre TrtType Acres 

0 12680 789308 17.1 0.0 2.4 2,500.0 1 0.0 

0 12680 789308 17.1 0.0 8.4 1,000.0 2 0.0 

0 12680 789308 17.1 0.0 1.2 3,500.0 3 0.0 

1 13582 789322 571.1 299.6 85.0 2,748.7 1 0.0 

1 13582 789322 571.1 66.9 71.1 1,000.0 2 66.9 

1 13582 789322 571.1 570.0 58.6 3,711.4 3 0.0 

2 12554 789329 3.8 0.0 3.3 2,500.0 1 0.0 

2 12554 789329 3.8 0.0 0.0 999,999.0 2 0.0 

2 12554 789329 3.8 0.0 5.3 3,506.7 3 0.0 

3 11010 789340 371.6 174.4 23.1 2,773.3 1 0.0 

3 11010 789340 371.6 75.2 13.8 1,000.0 2 0.0 

3 11010 789340 371.6 370.3 14.2 3,702.9 3 0.0 

 

 
Figure 9: Optimal treatment plan shapefile. The module will produce a treatment plan shapefile for every budget. 
T1_ac = area allocated to treatment type one from Table 3. Tot_ac = total treatment area allocated to unit. 

 
The budget summary table is designed to compare performance metrics and treatment 
allocations across budget levels (Table 7). It describes how much risk is mitigated at each 
budget level in USD (ObjVal field), percent of the baseline total (PerRR field), and percent of 
the maximum feasible risk reduction considering the feasibility and project size constraints 
in the model (PerMFRR field). It also reports how much of each treatment type is utilized in 
terms of both area (e.g., T1_acres field) and budget (e.g., T1_USD field). 
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Table 7: Budget summary table. Budget = treatment budget (USD). ObjValue = risk reduction objective value 
(USD). T1_acres = area allocated to treatment type 1 from Table 3. T1_USD = budget (USD) allocated to 
treatment type 1 from Table 3. PerRR = percent of total risk reduced. PerMFRR = percent of maximum feasible 
risk reduction. For the risk reduction percentage option, PerRed = the input percentage goal. 

Budget ObjVal T1_acres T1_USD T2_acres T2_USD … PerRR PerMFRR 

10,000,000 878,280 0 0 10,000 10,000,000  7.4 13.3 

50,000,000 2,469,318 9,162 27,966,968 21,576 21,576,378  20.8 37.4 

100,000,000 3,695,309 23,005 68,903,585 28,809 28,808,984  31.1 55.9 

200,000,000 5,058,042 44,931 131,825,047 36,284 36,283,663  42.5 76.4 

 
The last product is a figure summarizing the results of the avoided impact analysis (Figure 
10). This analysis first estimates a high-end budget that would result from treating all 
feasible area with the most expensive treatment type and then solves the linear program at 
many small budget increments up to the high-end budget. The top panel provides 
perspective about how the selected budget levels compare in terms of their cost-
effectiveness at reducing risk and how much of the maximum mitigable risk they achieve. 
The bottom panel illustrates how treatment type allocations shift with changing budget. In 
this example, prescribed fire dominates when budgets are small because it is the most cost-
effective treatment, but as budget because non-limiting, the treatment allocation shifts 
towards the complete treatment because it is most effective. 
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Figure 10: Avoided impact analysis. The top panel displays how much risk reduction is achieved at various 
budget levels and the bottom panel displays the optimal treatment allocation by type. Risk reduction % in the 
top panel is of the total risk. 

 
Map results (optional) 
 
This optional post-optimization workflow performs basic mapping of the optimization 
inputs, intermediate products, and output treatment plans to make the spatial information 
accessible to users without strong GIS skills. This process is separated from the 
optimization model because of the significant time it takes to produce the graphics.  
Additionally, some intermediate products are provided as GIS files for custom mapping and 
analysis in GIS. The output directory separates the maps and supplementary GIS files 
(Figure 11). 
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Figure 11: Fuel treatment optimization output folder structure.  

 
The maps folder features several products (Figure 12). The treatment plan summary 
figures map each treatment plan and report on the water supply risk mitigation effects 
(TrtPlan_[BUDGET LEVEL].tif). If multiple budget levels are provided in Table 7, a priority 
map is generated using the assigned priority names (TrtPlans_priority.tif). Lower budget 
levels identify the highest priorities for treatment. For each candidate treatment type, maps 
are provided of the modeled risk reduction ([TREATMENT TYPE]_risk_reduction.tif), area 
feasible for treatment ([TREATMENT TYPE]_feasibility.tif), treatment cost ([TREATMENT 
TYPE]_cost.tif), and treatment cost-effectiveness ([TREATMENT 
TYPE]_cost_effectiveness.tif). Cost-effectiveness is calculated as treatment risk reduction 
divided by treatment cost. 
 
 

 
Figure 12: Optional maps describing optimization model inputs, intermediate products, and treatment plan 
outputs. 
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The supplementary GIS folder provides access to several of the intermediate and output 
products of the optimization (Figure 13).  Rasters of treatment risk reduction and cost-
effectiveness are provided for each treatment type ([TREATMENT TYPE]_RR.tif and 
[TREATMENT TYPE]_BCR.tif). The full attribute information used to parameterize the 
linear optimization program is provided in tabular (TrtUnit_metrics.csv) and shapefile 
format (TrtUnit_metrics.shp).  
 

 
Figure 13: Supplementary output folder containing spatial data for viewing or analysis in GIS. 
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Performance Metrics Assessment 
 
The WIT also calculates a suite of performance metrics for accomplished or planned fuels 
reduction work. This workflow is meant to complement the landscape-scale fuel treatment 
optimization by summarizing many of the intermediate products of the risk assessment 
and selected co-benefits related to home protection, recreation, and wildlife at a relevant 
scale for accomplishments reporting or evaluating proposed projects.  
 
Process summary 
 
This module ingests information describing the location and type of past or planned fuels 
reduction treatments and performs a series of spatial analyses to estimate performance 
measures for each treatment unit. This includes accounting of modeled effects on fire 
behavior, post-fire erosion, sediment load to streams, and water supply infrastructure 
exposure to sediment. This information is intended to help convey the project benefits to 
water stakeholders in multiple relevant terms. The assessment also accounts for several of 
the wildfire protection co-benefits of source water protection to homes, wildlife, and 
recreation. The full list of metrics, data sources, and analysis methods are described in 
Appendix III. Benefits are currently assessed using two different methods (Figure 14). The 
first is an analysis of avoided impacts based on the same foundational risk assessment 
principals used in the wildfire water supply risk assessment (Finney 2005; Scott et al. 
2013) to estimate the conditional and expected impacts over a 25-year planning period. 
The second method is a simple overlay analysis to identify where treatments overlap 
resources of concern; depending on the data type, the resulting measures are either counts, 
lengths, or areas within the treated area or a defined buffer around the treated area. 
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Figure 14: Conceptual diagrams of the full avoided impact and overlay analyses used to quantify treatment co-
benefits. 

 
User input 
 

 
 
The only user input to the module is specifying which type of analysis to run. The past 
treatments option uses pre-processed data stored in the WIT to look at prior 
accomplishments by differencing current conditions from a 2016 baseline. Similarly, the 
optimal treatment plan(s) option directly accesses the output of the fuel treatment 
optimization module; the only requirement is that the optimization module has been 
successfully run first. The planned treatments option allows the user to make a forward-
looking assessment of proposed treatments by differing hypothetical post-treatment 
conditions from the current baseline. This option requires a spatial treatment plan in ESRI 
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shapefile format to be provided in the folder pointed to in the user interface. The shapefile 
can be named whatever the user desires. Only one shapefile can be provided. The existing 
planned treatment shapefile should be used as a template for future revisions (Figure 15). 
The shapefile must include a text field describing the planned treatment type (“TrtType”). 
The allowable options are “Thin”, “Rx fire”, “Complete”, and “Unknown” corresponding to 
the treatment types described in Appendix II. Spelling and capitalization must match. 
Treatments with “Unknown” type will be assessed as “Thin”. No aggregation or 
disaggregation of polygons is performed by the tool. If multiple disjunct polygons should be 
assessed as a single unit, they should either be merged into a multi-part polygon before 
running the module, or metrics should be summarized for the multiple related entries in 
the output. Similarly, multi-part polygons need to be converted into single-part polygons by 
the user prior to using the tool if metrics are desired for each polygon. Although not 
required, it is strongly suggested that the treatment plan also include attributes necessary 
for sorting and summarizing the metrics such as a unique numerical identifier, project and 
treatment unit names, managing agency, funder, date, and a brief description of the 
proposed activities. 
 

 
Figure 15: Example planned treatment shapefile with the required “TrtType” field and optional summary 
attributes.2 

  
Running the model 
 
The model first reads in the appropriate spatial representation of the treatment plan based 
on the user selected assessment type. Then, the appropriate baseline and post-treatment 
fire and erosion modeling products are assembled to represent the endpoints for the 
assessment. Consistent with the optimization module, the performance metrics for the 
optimal treatment plan input type will be assessed using the average effects for the 
selected treatment locations and types; this means the assessment models are run multiple 
times for every treatment unit, so expect long run times. Zonal statistics are used to 
aggregate metrics related to change in fire behavior, erosion, sediment delivery to 
infrastructure, and associated costs to the treatment units. Avoided impact and overlay 
analyses (Figure 14) are then performed for the co-benefits described in Appendix III. The 
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home loss model involves computationally intensive neighborhood analyses, so the 
assessment module is not quick; the analysis time should be in the range of 10-15 minutes 
on a high-performance computer. For the past and planned treatments, the output will 
include a single shapefile and spreadsheet table reporting the performance metrics. For the 
optimal treatment plan method, the output will instead include a shapefile and spreadsheet 
table for each budget level. 

 
Results 
 
The model outputs include both a table format for viewing in a spreadsheet program and 
shapefile viewing in a GIS (Figure 16). The performance measures are appended to the 
original attribute columns so the output can be filtered or summarized based on project, 
agency, or treatment type. Refer to the attribute key or descriptions provided in Appendix 
III on how to interpret the metrics. The output for the optimal treatment plan option will 
include additional outputs tagged with treatment type; these represent the average effects 
of applying each treatment type in each catchment. The optimal treatment plan option will 
also tag the performance metric tables with the budget level. 
 

 
Figure 16: Outputs of the performance metrics module include tabular and vector GIS files (shapefiles) depicting 
the treatment plan and associated performance metrics. The optimal treatment plan option will produce 
additional files depicting the average benefit for each treatment type in each unit and a composite of the selected 
treatment plan for each budget. 

 
Attributes beyond treatment type will prove useful for working with the model outputs. 
For example, metrics can be aggregated from treatment unit to project by summing most 
fields. For planned work, it may also be useful to sort and rank the candidate projects or 
treatment units by their benefit or cost effectiveness. 
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Appendix I: Water Supply Risk Assessment Details 
 
The risk assessment combines modeled fire likelihood and intensity with an effects 
analysis that includes predictions of post-fire erosion and sediment transport to water 
supplies and a translation to monetary impact using the stakeholder defined sediment 
impact costs (Figure 2). Fire likelihood is quantified with burn probability modeled with 
the large fire simulator (FSim; Finney et al. 2011) from Short et al. (2020). Fire intensity is 
accounted for using crown fire activity predicted with FlamMap 5.0 (Finney et al. 2015). 
Post-fire erosion is quantified for median rainfall conditions using a GIS-implementation of 
the Revised Universal Soil Loss Equation (RUSLE; Renard et al. 2015) by modifying the 
cover and soil erodibility factors. Sediment Delivery Ratio (SDR) models for hillslopes and 
channels (Wagenbrenner and Robichaud 2014; Frickel et al. 1975) are used to estimate 
sediment transport to water supplies. The conditional and expected mass of sediment 
delivered to each water supply are then combined with sediment impact costs to quantify 
the conditional monetary impacts and risk to water supplies.  
 
Fire likelihood 
 
Burn probability comes from a separate effort to estimate probabilistic wildfire hazard 
components with FSim (Short et al. 2020). FSim (Finney et al. 2011) models large fire 
occurrence, growth, and containment over many future fire seasons. Daily large fire 
occurrence is determined as a function of an artificial time series of the National Fire 
Danger Rating System Energy Release Component (ERC) for fuel model G calibrated with 
time series analysis of historical weather data. Fire growth is modeled using the minimum 
travel time algorithm (Finney 2002) based on topography and fuel conditions circa 2014 
(LANDFIRE 2016), and daily fuel moisture, wind speed, and wind direction. Daily wind 
speed and direction are drawn randomly from their historical joint probability distribution 
by month. Fire containment is modeled based on primary fuel type and daily fire growth 
metrics (Finney et al. 2009). Short et al. (2020) calibrated FSim to approximate the 
historical fire size distribution and rate of burning within biophysical regions, called 
“pyromes”, which have similar controls on wildfire activity. They distribute an estimate of 
burn probability at 270-m resolution calculated as the number of times each pixel burned 
over the 10,000 simulated fire seasons.  
 
Two modifications are made to the FSim burn probability for use in the WIT. First, the 
raster is reprojected and resampled to 30-m resolution with bilinear interpolation to match 
the other raster products used in the analysis. Second, the annual burn probability estimate 
from FSim is adjusted to fuel treatment planning period burn probability given the focus on 
estimating the risk reduction potential of fuel treatments. The WIT makes the simplifying 
assumption that fuel treatments will have constant effectiveness for a period of 25 years 
based on projected recovery in crowning and torching indices (Tinkham et al. 2016) with 
the level of regeneration that is typical after forest restoration treatments in the Colorado 
Front Range (Francis et al. 2018). A shorter planning period is recommended for more 
productive regions. Equation 1 is used to convert from the annual burn probability to burn 
probability over a 25-year period. 
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𝐵𝑃25 = 1 − (1 − 𝐵𝑃1)25       Equation 1 

 
It is important to acknowledge the limitations of modeled burn probability. Burn 
probability modeling is akin to characterizing historical fire regimes in that it both seek to 
summarize general trends in the frequency of burning across a landscape instead of 
describing the exact extent and timing of wildfire activity. Burn probability modeling 
methods have evolved quickly since their introduction in the early 2000s and it is expected 
that new models and calibration techniques will continue to develop and improve our 
understanding of fire likelihood. The reader is referred to Finney et al. (2011) and Short et 
al. (2020) for discussion of limitations with the FSim model and its application to the 
modeling in this study. The recent review from Parisien et al. (2019) provides a general 
summary of burn probability modeling with relevant discussion of the unresolved need to 
validate predictions and debate about appropriate methods to do so. The consensus is that 
burn probability modeling can capture the relative trends in fire activity across a landscape 
given that the driving factors – ignition sources, climate, and fuels – do not appreciably 
change, but it is acknowledged that near-term patterns of fire activity are likely to vary 
from predictions, especially in systems where much of the fire activity occurs in infrequent, 
but large wildfires. 
 
Fire likelihood is considered static in the WIT assessment of risk and risk reduction benefit 
(Figure 2) for three reasons. First, the WIT makes use of a nationally consistent data 
product that represents only baseline conditions (Short et al. 2020). Second, it is currently 
computationally infeasible to evaluate change in burn probability for each decision unit in 
the optimization model and how the prior decisions change the benefit of subsequent 
decisions. Incorporating treatment effects on burn probability into the optimization model 
would require serious approximations that largely negate the benefit of adding detailed 
modeling. Third, there is not currently a strong scientific consensus that fuel treatments 
will reduce burn probability without understanding if and how they may contribute to fire 
containment efforts (Agee et al. 2000; Reinhardt et al. 2008). FSim’s current containment 
model (Finney et al. 2009) only addresses active suppression indirectly via the weather 
and growth conditions that facilitate containment. The most relevant estimate of fuel 
treatment effects on burn probability for the Peaks to People focus area comes from a study 
of large landscape fuel treatments in Oregon using pre- and post-treatment comparisons of 
fire activity modeled with FSim (Thompson et al. 2013). This study estimated that burn 
probability would be reduced by approximately 36% within the treated areas, but this 
effect diminished to 23% when considering areas within 2 miles of treatments, and to only 
11% across the full landscape. It is reasonable to think that similar effects could be 
achieved in Northern Colorado with combined thinning and prescribed fire treatments. 
 
Fire behavior  
 
The FlamMap 5.0 spatial fire modeling system (Finney et al. 2015) is used to predict crown 
fire activity (CFA; Scott and Reinhardt 2001) as a proxy for soil burn severity. CFA is a 
prediction of fire type in categories of unburned, surface fire, passive crown fire, and active 
crown fire. Surface fires spread primarily through live and dead fuels on the forest floor 
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including litter, duff, wood, grass, and shrubs. Passive crown fire spreads primarily through 
surface fuels, but it has sufficient intensity to initiate crown fire in patches of trees (also 
called “torching”). Active crown fire includes a substantial component of fire spread 
through the forest canopy (also called “crowning”). Surface fire intensity increases along 
the spectrum of surface to active crown fire behavior, so CFA is commonly used as a proxy 
for burn severity in watershed risk assessments by mapping surface, passive crown, and 
active crown fire to low, moderate, and high burn severity, respectively (Tillery et al. 2014; 
Haas et al. 2017; Jones et al. 2017; Gannon et al. 2019). 
 
FlamMap predicts CFA using spatial data on fuels and topography and specified fuel 
moisture and wind conditions. Baseline conditions are described in the assessment using 
circa 2016 raster fuels and topography data from LANDFIRE (2019). Canopy base height 
was reduced 30% and the fire behavior fuel model was changed to high load conifer litter 
(Scott and Burgan 2005) to reflect recent observations of extreme fire behavior in 
lodgepole pine forests (Moriarty et al. 2019). To represent current conditions (e.g. year 
2020), fuels were also updated based on spatial fuel treatment and wildfire datasets from 
the USDA Forest Service, DOI National Park Service, the Colorado State Forest Service, 
Larimer County, and Peaks to People.  
 
Historical data from the Redfeather, Estes Park, and Redstone Remote Automated Weather 
Stations (RAWS) were used to identify an appropriate problem scenario for fire behavior 
modeling. Most area burns in the Colorado Front Range during very dry and windy 
conditions (Graham 2003), so the historical 97th percentile (extreme) weather conditions 
are used to represent the likely burning conditions. FireFamilyPlus 4.1 (Bradshaw and 
McCormick 2000) was used to summarize 25th, 50th, 90th, and 97th percentile fire season (1 
April to 31 October) conditions (Table 8). Wind speeds were converted from 10-minute 
averages to 1-minute averages to better reflect potential fire behavior (Crosby and 
Chandler 1966). Fuel moisture conditions were averaged across the three stations, but only 
the Redfeather and Estes Park stations were used for wind speed because Redstone is 
influenced heavily by upcanyon winds. The uphill wind direction option is used in FlamMap 
to model the worst case for each pixel. 
 
Table 8: Percentiles of fuel moisture by class and wind speeds from local RAWS. The 97th percentile conditions 
are used in the WIT analysis. Other percentiles are provided for comparison. 

 Fuel moisture (%) Wind speed (mph @ 20ft) 

Percentile 1-hr 10-hr 100-hr Herbaceous Woody 10-min ave. 1-min ave. 

25th 8 10 14 58 94 5 9 

50th 5 7 11 33 63 7 11 

90th 3 4 7 4 63 12 17 

97th 2 3 6 2 63 15 20 

 
It is important to acknowledge that fire behavior prediction systems, including FlamMap, 
were not designed to predict fire severity. There remains a need for basic research on the 
fire behavior metrics, observed or modeled, that best predict burn severity (Moody et al. 
2013; Shakesby et al. 2016). CFA is a reasonable, but likely imperfect proxy for burn 
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severity because of the variety of surface and canopy fuel configurations that support 
crown fire behavior. Imperfect data and model accuracy also create uncertainty in fire 
behavior predictions. Fuel moisture and fire weather conditions are dynamic in space and 
time, so 97th percentile conditions will not match all future fire conditions. This is 
especially true for wind direction, which was assumed to blow upslope in this analysis to 
predict a consistently worst-case outcome across aspects. In reality, some aspects will be 
exposed to wind, while others will be shadowed. It is difficult to predict whether fire will be 
spreading up or down a slope without information on ignition location and wind direction. 
This analysis also does not account for terrain-influenced winds, which can cause wind to 
accelerate beyond the domain-averaged wind speeds used in the analysis. The pre-modeled 
burn severity should be viewed as representing the general tendency in burn severity 
based on fuels and topography.   
 
Hillslope Erosion 
 
The Revised Universal Soil Loss Equation (RUSLE) predicts annual soil loss (A) in Mg ha-1 
yr-1 as the product of five sub-factors (Eqn 2): rainfall erosivity (R), soil erodibility (K), 
length and slope (LS), cover (C), and support practices (P) (Renard et al. 1997).  
 

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃       Equation 2 
 
Spatial data and analyses are used to approximate the R, K, LS, and C factors for unburned 
conditions, as described in Theobald et al. (2010), Litschert et al. (2014), and Gannon et al. 
(2019), at 30-m resolution. Support practices (P), which typically refer to erosion 
mitigation actions, are not quantified in the assessment to model the unmitigated erosion 
hazard. 
 
Rainfall Erosivity 
 
Rainfall erosivity (R), also called “rainfall-runoff erosivity”, is an annual metric of rainfall 
calculated as the product of total storm energy and maximum 30-minute intensity (MJ mm 
ha-1 hr-1). It is a better predictor of erosion magnitude than either rainfall depth or intensity 
alone, because it accounts for the available energy to detach soil particles and the 
occurrence of infiltration-excess overland flow to transport mobilized sediment (Renard et 
al. 1997). Rainfall erosivity was characterized using National Oceanic and Atmospheric 
Administration (NOAA) 15-minute rainfall data (Perica et al. 2013) from 11 rainfall 
stations representative of the Colorado Front Range climate that were assembled for a 
separate study (Wilson et al. 2018) and processed with the Rainfall Intensity 
Summarization Tool (RIST; Dabney 2016) to calculate storm-level rainfall erosivity. Storm-
level rainfall erosivity was summed by year to calculate annual rainfall erosivity for each 
station and year. This data set spans the years 1971 to 2010 and includes 403 station-years 
of annual rainfall erosivity observations.  
 
Rainfall erosivity is highly variable across space and time in the Colorado Front Range 
(Figure 17). We therefore treat rainfall as a random process described by the annual 
rainfall erosivity observations pooled across stations. Burned watersheds are most-
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susceptible to erosion for the first three years following wildfire (Benavides-Solorio and 
MacDonald 2005; Wagenbrenner et al. 2006; Robichaud et al. 2013), so the WIT focuses on 
the total sediment production during these years. Exposure to post-fire rainfall erosivity is 
therefore most appropriately characterized by the distribution of three-year block means 
of annual rainfall erosivity. However, the annual and three-year erosivity distributions are 
not substantially different (Figure 18), so the annual distribution is used in the WIT for 
ease of interpretation. In the risk assessment, R is modeled as a spatially invariant surface 
of median annual rainfall erosivity (615 MJ mm ha-1 hr-1), which means R has no influence 
on the spatial variability in risk. Uncertainty in erosion-related risks is communicated in 
the performance metrics (see Appendix III) using the 5th and 95th percentiles of annual 
rainfall erosivity – 210 and 2300 MJ mm ha-1 hr-1 – to estimate an empirical 90% 
confidence interval for the predictions.  
 

 
Figure 17: Time series of rainfall erosivity for the eleven stations used in the analysis. Note log-scale y-axis. 
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Figure 18: Empirical cumulative frequency distribution of Colorado Front Range annual erosivity from 403 
station-years of annual erosivity observations. The three-year block distribution is used in the WIT. 

 
Soil Erodibility 
 
Undisturbed soil erodibility (K) is described using the Soil Survey Geographic Database 
(SSURGO) gap-filled where necessary with the State Soil Geographic Database (STATSGO) 
(NRCS Soil Survey Staff 2016). The procedures of Yochum and Norman (2014) are used to 
calculate a weighted mean of whole soil K factor (Kwfact) for each map unit. First, the 
component depth-weighted mean K is calculated for the top 15 cm of soil. Then the map 
unit area-weighted mean K is calculated based on the proportional coverage of 
components. Components mapped as rock do not have K values assigned to them, but 
complete bedrock coverage is rare within these map units based on inspection of aerial 
imagery. Instead of treating rock components as zero K, they are assigned 20% of the area-
weighted mean K of the other components in the same map unit. SSURGO map units that 
are missing K values for more than 50% of their area are gap-filled with equivalent metrics 
from STATSGO. All K values are converted to metric units (Renard et al. 1997). 
 
Length and Slope 
 
The combined length and slope (LS) factors are calculated using terrain analysis of a 30-m 
DEM (USEPA and USGS 2012) following methods in Theobald et al. (2010). The slope 
portion (S) is calculated per Nearing (1997) where θ is slope steepness in radians (Eqn 3). 
Consistent with previous studies (Theobald et al. 2010; Litschert et al. 2014), θ is limited to 
55% when calculating S to not extrapolate beyond the range of Nearing’s data.  
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𝑆 =  −1.5 +  
17

1+ 𝑒(2.3−6.1×sin 𝜃)
        Equation 3 

 
LS is then calculated per Winchell et al. (2008) where A is the contributing area to the cell 
inlet in m2, D is the cell dimension in m, m is slope-length exponent, and x is the shape 
factor calculated as a function of cell aspect (α) in radians (Eqns 4-7). The slope-length 
exponent (m) is based on the ratio of rill to interrill erosion (β), which is estimated from 
slope steepness (θ) based on McCool et al. (1989).  
 

𝐿𝑆 = 𝑆 ×  
(𝐴+𝐷2)𝑚+1−𝐴𝑚+1

𝐷𝑚+2× 𝑥𝑚× 22.13𝑚
       Equation 4 

 

𝑚 =  
𝛽

1+ 𝛽 
          Equation 5 

 

𝛽 =  
𝑠𝑖𝑛𝜃

0.0896

3×𝑠𝑖𝑛𝜃0.8+0.56
         Equation 6 

 
𝑥 = |𝑠𝑖𝑛𝛼| + |𝑐𝑜𝑠𝛼|        Equation 7 
 

Slope steepness (θ), slope aspect (α), and contributing area (A) are calculated from a 30-m 
resolution filled DEM using standard slope, aspect, and D8 flow direction methods in 
ArcGIS 10.3. When calculating LS, A is limited to 3,000 m2 to approximate the maximum 
hillslope length of 300 m suggested in Renard et al. (1997). LS values are also constrained 
to the maximum of 72.15 from Renard et al. (1997). 
 
Cover 
 
Undisturbed cover factors (C) are assigned by mapping an appropriate C reported in 
previous studies (Table 9) to each Existing Vegetation Type (EVT) from LANDFIRE (2016). 
The lowest values of C are assigned to forests (low erosion), moderate values are assigned 
to sparse grass and shrub cover types, and the highest values are assigned to cover types 
associated with agriculture or mining. We assigned barren areas above 2,900 m ASL a C of 
0.001 because these alpine systems have high rock cover and should also be minimally 
impacted by fire. These baseline estimates of C are of relatively minor importance in the 
analysis, because they are generally small compared to post-wildfire C (Larsen and 
MacDonald 2007) and the WIT calculates the post-fire increase in erosion (difference 
between burned and unburned). 
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Table 9: Cover factor (C) values (unitless) from previous studies are assigned to LANDFIRE Existing Vegetation 
Type (EVT) (2016). The top 30 vegetation types, which account for 95% of the area, are shown here. 

EVT class name % of Area C factor Reference 

Rocky Mountain Lodgepole Pine Forest 16.8 0.0020 Breiby 2006 

Southern Rocky Mountain Ponderosa Pine Woodland 16.2 0.0027 Miller et al. 2003 

Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland 10.9 0.0020 Breiby 2006 

Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland 9.6 0.0020 Breiby 2006 

Inter-Mountain Basins Big Sagebrush Shrubland 9.0 0.0290 McQuen 1998 

Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland 4.1 0.0010 Breiby 2006 

Rocky Mountain Lower Montane-Foothill Shrubland 3.7 0.0250 Breiby 2006 

Snow-Ice 2.7 0.0010 Yang et al. 2003 

Barren 2.1 1.0000 Toy and Foster 1998 

Artemisia tridentata ssp. vaseyana Shrubland Alliance 2.0 0.0290 McQuen 1998 

Rocky Mountain Aspen Forest and Woodland 2.0 0.0010 Breiby 2006 

Southern Rocky Mountain Montane-Subalpine Grassland 1.7 0.0120 Breiby 2006 

Introduced Upland Vegetation-Annual Grassland 1.7 0.0120 Breiby 2006 

Rocky Mountain Alpine Turf 1.2 0.0120 Breiby 2006 

Southern Rocky Mountain Mesic Montane Mixed Conifer Forest and Woodland 1.2 0.0020 Breiby 2006 

Rocky Mountain Montane Riparian Forest and Woodland 1.1 0.0010 Breiby 2006 

Inter-Mountain Basins Semi-Desert Grassland 1.1 0.0800 Yang et al. 2003 

Western Cool Temperate Developed Ruderal Grassland 1.0 0.0120 Breiby 2006 

Open Water 1.0 0.0000 Breiby 2006 

Developed-Roads 0.8 0.0001 Toy and Foster 1998 

Introduced Upland Vegetation-Perennial Grassland and Forbland 0.8 0.0120 Breiby 2006 

Inter-Mountain Basins Big Sagebrush Steppe 0.7 0.0290 McQuen 1998 

Western Great Plains Shortgrass Prairie 0.5 0.0800 Yang et al. 2003 

Rocky Mountain Subalpine/Upper Montane Riparian Shrubland 0.5 0.0010 Breiby 2006 

Southern Colorado Plateau Sand Shrubland 0.5 0.0290 McQuen 1998 

Western Great Plains Floodplain Forest and Woodland 0.5 0.0100 Breiby 2006 

Inter-Mountain Basins Semi-Desert Shrub-Steppe 0.5 0.0800 Yang et al. 2003 

Developed-Low Intensity 0.5 0.0020 Fu et al. 2006 

Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland 0.4 0.0020 Breiby 2006 

Inter-Mountain Basins Montane Sagebrush Steppe 0.4 0.0290 McQuen 1998 

 
Fire Effects on Erosion 
 
Fire-related increases in erosion are primarily attributed to changes in surface cover 
(Larsen et al. 2009) and altered soil properties (Shakesby and Doerr 2006); therefore, fire 
effects on erosion are modeled by modifying the RUSLE C and K factors. For forests (≥ 10% 
canopy cover as mapped by LANDFIRE [2016]), post-fire C is changed to the mean first-
year post-fire C factors by burn severity reported in Larsen and MacDonald (2007) (Table 
10). Due to the diversity of non-forested vegetation types (< 10% canopy cover) and the 
more limited estimates of post-fire cover in these systems (Pierson and Williams 2016), 
proportional adjustment factors are used to model fire effects on C (Table 10). Fire 
decreases soil infiltration capacity and cohesion owing to deposition of hydrophobic 
compounds, soil sealing, and consumption of organic material (DeBano et al. 2005; 
Shakesby and Doerr 2006). Direct measures of post-fire K factors are lacking, but Larsen 
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and MacDonald (2007) back-calculated that K was increased by a factor of 2.5 for high burn 
severity. Given the limitations with their method of estimating change in K, more 
conservative adjustment factors are used to estimate fire effects on K (Table 10).  
 
Table 10: Mean post-fire C factor values by burn severity from Larsen and MacDonald (2007) are used to assign 
post-fire C for forests (≥ 10% LANDFIRE canopy cover). Fire effects on C factor for non-forest (< 10% LANDFIRE 
canopy cover) are applied as proportional adjustment factors. Fire effects on K factor for all vegetation are 
applied as proportional adjustment factors. 

 Fire Effects 
Crown Fire 
Activity 

Burn 
Severity 

Forest C Non-forest C 
Adjustment Factor 

K Adjustment 
Factor 

Surface Low 0.01 1.2 1.5 
Passive Moderate 0.05 1.5 1.75 
Active High 0.20 2.0 2.0 

 
The WIT focuses on the increase in post-fire erosion by differencing the predicted post-fire 
and pre-fire erosion predictions. RUSLE can predict very high erosion rates on the steepest 
slopes; although erosion potential may be this high, sediment availability will likely limit 
these high rates from being realized. Post-fire erosion increases are therefore limited to 
200 Mg ha-1 yr-1 based on the maximum observed rates in the western US (Moody and 
Martin 2009). Hillslope erosion typically remains elevated for 2-5 years after fires in the 
Colorado Front Range (Benavides-Solorio and MacDonald 2005; Wagenbrenner et al. 2006; 
Robichaud et al. 2013). To simplify, the WIT accounts for increased erosion for the first 
three years post-fire using a correction factor applied to the first-year predictions. We 
estimate that with constant rainfall, erosion in year two should be 15% lower than in year 
one and erosion in year three should be 75% less than year one, based on the rate of 
surface cover recovery and its influence on erosion (Pietraszek 2006; Benavides-Solorio 
and MacDonald 2005; Larsen et al. 2009). Therefore, we multiply the first-year post-fire 
erosion estimate by a factor of 2.1 to estimate the total post-fire sediment yield over the 
first three years. 
 
The RUSLE model was originally developed for agricultural use (Renard et al. 1997) and 
the GIS implementation we use approximates the original model. The most significant 
departure from the original is the raster-based calculation of the LS factor, which has been 
validated for use in agricultural settings (Winchell et al. 2008), but not for use in 
mountainous terrain. The implementation used here controls for excessive erosion 
predictions on very steep, long slopes by limiting the S subfactor, flow accumulation values, 
combined LS factors, and resulting erosion predictions to the maximum values reported in 
previous studies. When pixel-level estimates of erosion are averaged to the catchment-
level, most of the predicted sediment yields from hillslope erosion are within the range 
reported by previous studies (Gannon et al. 2019). The baseline C factor values also have 
moderate uncertainty due to the use of best judgement to assign values from previous 
studies to remotely sensed landcover types. This uncertainty is greatest for the non-forest 
vegetation types because of the way fire effects are modeled with adjustment factors. The 
soils data are also fairly course and soil properties are sometimes inconsistent across areas 
that were surveyed at different times by different personnel. Spatial and temporal 
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variability in annual rainfall erosivity spans several orders of magnitude, suggesting the 
actual post-fire erosion depends strongly on the subsequent rainfall, which cannot be 
predicted in advance. Erosion is modeled for median rainfall erosivity in the WIT so 
impacts could be higher than predicted if fires are followed by more rare and extreme 
rainfall. 
 
Hillslope Sediment Transport 
 
The proportion of hillslope sediment delivered to the stream channel network is estimated 
with an empirical model of post-fire hillslope sediment delivery ratio (hSDR) from the 
western US (Wagenbrenner and Robichaud 2014). SDR quantifies the proportion of gross 
erosion that is delivered to the outlet of a catchment. When hillslope erosion is the primary 
source of sediment, unit area sediment yields decline with increasing watershed size (hSDR 
< 1) because some sediment is stored on hillslopes and in channels (Walling 1983). First, 
the NHDPlus stream channel network is extended to include all pixels with greater than 
10.8 ha contributing area (Henkle et al. 2011) because the flowline network does not 
include all channels and it especially underestimates the extent of the channel network 
after wildfire (Wohl 2013). The annual length ratio (LR) model from Wagenbrenner and 
Robichaud (2014) is then used to estimate post-fire hSDR (Eqns 8 and 9). Terrain analysis 
of a 30-m DEM (USEPA and USGS 2012) is used to calculate the flow path length from each 
pixel to the nearest stream channel as the “catchment length” and the flow path length 
across the pixel as the “plot length”. Channels pixels are assigned hSDR of 1. 
  

𝐿𝑅 =  
𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝐹𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑖𝑥𝑒𝑙
      Equation 8 

 
log(ℎ𝑆𝐷𝑅) =  −0.56 − 0.0094 ∗ 𝐿𝑅      Equation 9 

 
Catchment-level sediment delivery to the draining flowline (𝑇𝑆) is calculated in Mg as the 
sumproduct of the pixel-level erosion (A) and hSDR values, indexed with i, and a correction 
factor to adjust for pixel size (Eqn 10). 
 

𝑇𝑆 = ∑ 𝐴𝑖 × 0.09
ℎ𝑎

𝑝𝑖𝑥𝑒𝑙
× ℎ𝑆𝐷𝑅𝑖

𝑁

𝑖=1
      Equation 10 

 
hSDR is an approximation of highly dynamic sediment transport processes. The source of 
the model used here documents that substantial variability in SDR remains unexplained by 
their model (Wagenbrenner and Robichaud 2014). The hSDR model was also developed 
from catchments burned mostly at moderate or high severity, so it will likely overestimate 
sediment yield from areas burned at low severity and burned areas separated from the 
stream by an unburned buffer. Although more sophisticated models are available for 
predicting sediment transport, they depend strongly on hydrologic conditions, which 
cannot be predicted in advance. The combined RUSLE and hSDR models have been shown 
to make reasonable predictions of sediment yield from small watersheds compared to 
previous studies in the region (Gannon et al. 2019). 
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Stream Channel Sediment Transport 
 
The proportion of sediment transported to water supplies is estimated with a channel 
sediment delivery ratio (cSDR) model (Frickel et al. 1975) modified for the channel types in 
the study area. Low order channels in the study area are characterized by ephemeral or 
intermittent flow and high roughness from coarse bed material and streamside vegetation. 
The highest order channels are still steep mountain streams with considerably greater 
transport capacity due to higher magnitude perennial flows. Previous observations in this 
region suggest sediment transport efficiency should be very efficient in the highest order 
channels (Moody and Martin 2001; Miller et al. 2017), especially for silts and clays (Ryan et 
al. 2011). To approximate these trends, cSDRs of 0.75, 0.80, 0.85 and 0.95 per 10 km of 
stream length are assigned to 1st, 2nd, 3rd, and 4th or higher-order streams, respectively. 
Flowline cSDR is then calculated based on length per Eqn 10. 

 

𝑐𝑆𝐷𝑅 = 𝑐𝑆𝐷𝑅10 𝑘𝑚
(

𝐿𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑘𝑚

10 𝑘𝑚
)       Equation 11 

 
Flowlines intercepting lakes and reservoirs are assigned a cSDR of 0.05 to reflect that most 
sediment will be trapped. The mass of fire-related sediment (Mg) delivered to a water 
supply (𝑇𝑊𝑆) is calculated in Mg as the sum of sediment delivered to streams for all 
upstream catchments multiplied by the product of cSDRs for the intervening flowlines (Eqn 
12). 
 

𝑇𝑊𝑆 =  ∑ (𝑇𝑆𝑗
𝑂
𝑗=1 × ∏ 𝑐𝑆𝐷𝑅𝑘)𝑃

𝑘=1        Equation 12 

 
The subscript j is the index for the O upstream catchments and the subscript k is the index 
for the P intervening flowlines between catchment j and the water supply. 
 
cSDR is also an approximation of highly dynamic sediment transport processes. Sediment 
transport in streams depends on the magnitude and timing of sediment and water inputs, 
which cannot be accurately predicted in advance, thus negating much of the benefit of 
advanced sediment transport models. The model used here approximates the trends in 
sediment transport efficiency documented in previous studies, but the use of stream order 
ignores within-order variability in flow, slope, and roughness that influence bedload 
transport rates. Despite these uncertainties, the combined RUSLE, hSDR, and cSDR models 
have been shown to make reasonable predictions of sediment yield from large watersheds 
compared to the well-documented impacts of the Buffalo Creek Fire (Moody and Martin 
2001; Gannon et al. 2019). 
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Appendix II: Fuel Treatment Optimization Details 
 
Linear program formulation 
 
Objective function: 

max 𝑍 =  ∑ ∑ 𝑅𝑅𝑖,𝑡 ∗  𝑥𝑖,𝑡

𝑃

𝑡=1

𝑁

𝑖=1

 

 

Constraints: 

𝑥𝑖,𝑡 ≤ 𝐹𝑖,𝑡     ∀ 𝑖, 𝑡 
 

 
∑ 𝑥𝑖,𝑡

𝑃
𝑡=1 ≤ 𝑡𝐹𝑖      ∀ 𝑖 

 
 

𝑥𝑖,𝑡 ≥ 0     ∀ 𝑖, 𝑡 
 

∑ ∑ 𝑇𝐶𝑖,𝑡 ∗  𝑥𝑖,𝑡 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 ∗ 𝐵𝑃𝑡

𝑃

𝑡=1

             

𝑁

𝑖=1

 ∀ 𝑖, 𝑡 

 

∑ ∑ 𝑇𝐶𝑖,𝑡 ∗  𝑥𝑖,𝑡 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

𝑃

𝑡=1

𝑁

𝑖=1

 

 
Subscript notation: 

i is used to index treatment units from 1 to N 
t is used to index treatment types from 1 to P   

Decision variables: 
xi,t is the area (ac) of treatment t assigned to treatment unit i 

Parameters: 
 Z is the total risk reduction (USD) 

RRi,t is the risk reduction (USD ac-1) for treatment t applied to treatment unit i 
 Fi,t is the feasible area (ac) for treatment t in treatment unit i 

tFi is the total feasible area (ac) for any treatment in treatment unit i 
 TCi,t is the cost (USD ac-1) of applying treatment t in treatment unit i 
 Budget is the funding available for fuel treatment (USD) 
 BPt is the maximum budget proportion that can be allocated to treatment type t 
 
Minimum and maximum treatment sizes (ac) are also imposed on the model by pre-
processing decision units to eliminate those that fall under the minimum treatment size 
and by shrinking the feasible acres for those decision units that exceed the maximum 
treatment size. 
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Treatment effects 
 
Fuel treatment effects on risk are addressed in the assessment by altering the baseline 
fuels characteristics for the fire modeling and re-running the risk assessment for post-
treatment conditions (Figure 2). Post-treatment risk is then subtracted from the baseline 
risk to estimate risk reduction as the benefit to be maximized in the optimization model. 
 
The three treatments currently considered in the model for Northern Colorado are 
thinning, prescribed fire, and a complete treatment consisting of thinning followed by 
prescribed fire. The primary effects of treatments on the fuel variable inputs to FlamMap 
(Finney et al. 2015) are modeled with proportional adjustments for canopy variables 
(Table 11) and categorical changes in the fire behavior fuel model for surface fuels (Table 
12) based on the mean effects of hazardous fuels reduction and forest restoration projects 
in the western U.S. (Stephens and Moghaddas 2005; Stephens et al. 2009; Fulé et al. 2012; 
Ziegler et al. 2017; Heinsch et al. 2018). These same effects are also used for updating the 
LANDFIRE (2019) fuels data to current conditions. 
 
The canopy adjustments (Table 11) represent that thinning treatments reduce canopy 
cover and canopy bulk density (canopy fuel per volume) by removing trees. Thinning for 
restoration or hazardous fuels reduction typically targets the smallest trees for removal, 
which increases the average canopy base height and canopy height. Prescribed fire results 
in smaller changes to canopy fuels where it has been studied in California (Stephens and 
Moghaddas 2005). Initial monitoring of prescribed fire effects in Northern Colorado 
suggest it has more significant effects on canopy fuels than in California, likely due to the 
shorter stature of our forests (Morici et al. 2019). Future updates to the WIT may revise 
prescribed fire effects if this trend is confirmed by additional monitoring.  
 
Table 11: Proportional adjustment factors used to estimate treatment effects on canopy variables. CBD = canopy 
bulk density. CBH = canopy base height. CC = canopy cover. CH = canopy height. 

 Adjustment factor 

Treatment CBD CBH CC CH 

Thin 0.60 1.20 0.70 1.20 

Rx fire 0.92 1.09 0.95 1.13 

Complete 0.50 1.20 0.75 1.20 
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Table 12: Fire behavior fuel model changes by surface fuel management type using standard codes from Scott 
and Burgan (2005). Changes are highlighted in bold, red type. 

Code Baseline Manage Rx fire Rearrange 
NB1 91 91 91 91 
NB2 92 92 92 92 
NB3 93 93 93 93 
NB4 94 94 94 94 
NB5 95 95 95 95 
NB6 96 96 96 96 
NB7 97 97 97 97 
NB8 98 98 98 98 
NB9 99 99 99 99 
GR1 101 101 101 201 
GR2 102 102 101 201 
GR3 103 103 101 201 
GR4 104 104 101 201 
GR5 105 105 101 201 
GR6 106 106 101 201 
GR7 107 107 101 201 
GR8 108 108 101 201 
GR9 109 109 101 201 
GS1 121 121 121 201 
GS2 122 122 121 201 
GS3 123 123 121 201 
GS4 124 124 121 201 
SH1 141 141 141 201 
SH2 142 142 141 201 
SH3 143 143 141 201 
SH4 144 144 141 201 
SH5 145 145 141 201 
SH6 146 146 141 201 
SH7 147 147 141 201 
SH8 148 148 141 201 
SH9 149 149 141 201 
TU1 161 161 161 201 
TU2 162 162 161 201 
TU3 163 163 161 201 
TU4 164 164 161 201 
TU5 165 165 161 201 
TL1 181 181 181 201 
TL2 182 182 181 201 
TL3 183 183 181 201 
TL4 184 184 181 201 
TL5 185 185 181 201 
TL6 186 186 181 201 
TL7 187 187 181 201 
TL8 188 188 181 201 
TL9 189 189 181 201 
SB1 201 201 201 201 
SB2 202 201 201 201 
SB3 203 201 201 201 
SB4 204 201 201 201 
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Fire behavior fuel models (Scott and Burgan 2005) are widely used in fire modeling to 
represent common fuel types, loadings, and arrangements and their characteristic flame 
lengths (or intensities) and rates of spread. Because fire behavior fuel models are 
categorical with finite options (n=40 in Scott and Burgan 2005), they do not offer a high 
degree of precision to represent treatment effects. Most studies of fuel treatment effects in 
the western U.S. (Stephens and Moghaddas 2005; Stephens et al. 2009; Fulé et al. 2012) 
suggest surface fuels should increase slightly with thinning only treatments, but the 
amount, type, and arrangement of logging residues can vary widely based on harvesting 
methods. Initial monitoring of thinning treatments in Northern Colorado suggests the 
surface fuel additions are minor when the preferred method of mechanical whole-tree 
harvesting is used (Morici et al. 2019). Therefore, we assume some form of slash 
management will accompany thinning treatments, so the surface fuel additions will be 
minor enough that changing the fire behavior fuel model is not warranted (Table 12). The 
one exception is that we assume heavy standing and downed fuels in slash-blowdown fuel 
types would be addressed by treatment (Table 12). Prescribed fire effects are represented 
as changing the fire behavior fuel model to the least intense model in each fuel model type 
(e.g., timber understory, timber litter; Table 12). A rearrange surface fuel treatment is 
presented (Table 11) to describe lop and scatter and mastication effects on intensifying 
surface fire behavior based on the masticated fuel bed burning experiments of Heinsch et 
al. (2018). The rearrange option is not applied to any of the hypothetical future treatments; 
it is only used to represent some past actions when updating fuels data to reflect current 
conditions. 
 
The methods used to represent the primary effects of treatments on fuels have some 
limitations. Foremost, they are dependent on LANDFIRE (2019) accurately representing 
the baseline fuel conditions. Modeling treatments with mean effects implies that the 
intensity of treatment is uniform, which is obviously difficult to attain with prescribed fire, 
and conflicts with restoration guidance for the region that advocates for intentionally 
creating heterogeneity in forest structure with thinning treatments (Addington et al. 2018). 
Fine-scale differences in treatment effects between the model and reality should not 
significantly affect the mean benefit of the treatment on a given unit of the landscape. Using 
fire behavior fuel model reclassifications to represent treatment effects on surface fuels is 
also an approximation of reality. 
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Treatment feasibility 
 
Treatment feasibility modeling focuses on mapping the hard constraints on treatment 
placement in a binary raster format (0 = infeasible; 1 = feasible). The spatial resolution and 
alignment of the rasters should match the LANDFIRE (2019) data used elsewhere in the 
WIT analyses. 
 
Thinning 
 
The thinning treatment is restricted to forested environments that do not have land 
designations precluding active management. Forested is defined as areas mapped by 
LANDFIRE (2019) with greater than or equal to 10% canopy cover. Land management 
designations precluding active management include USDA Forest Service wilderness, 
National Park Service wilderness, and Forest Service upper tier roadless.  Within Rocky 
Mountain National Park, mechanical treatments are restricted to within 3 miles of the 
eastern park boundary based on the spatial distribution of past projects and the park’s 
primary fire management objective to reduce wildfire transmission into communities. 
 
Prescribed fire 
 
Prescribed fire as a first-entry tool is restricted to dry forests associated with frequent to 
moderate fire return intervals and primarily low to mixed severity effects identified from 
the present LANDFIRE (2019) existing vegetation types (Table 13). Notably, this list does 
not include lodgepole pine or spruce-fir forest types. Prescribed fire is also limited from 
areas within 250 m of buildings as mapped by Caggiano et al. (2016). 
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Table 13: LANDFIRE (2019) existing vegetation types considered appropriate for prescribed fire as a first-entry 
tool. 

Value Name 

7054 Southern Rocky Mountain Ponderosa Pine Woodland 

7051 Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland 

7011 Rocky Mountain Aspen Forest and Woodland 

9019 Rocky Mountain Lower Montane-Foothill Riparian Woodland 

7117 Southern Rocky Mountain Ponderosa Pine Savanna 

7052 Southern Rocky Mountain Mesic Montane Mixed Conifer Forest and Woodland 

7107 Rocky Mountain Gambel Oak-Mixed Montane Shrubland 

7049 Rocky Mountain Foothill Limber Pine-Juniper Woodland 

7193 Recently Logged-Tree Cover 

7061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland 

7016 Colorado Plateau Pinyon-Juniper Woodland 

7059 Southern Rocky Mountain Pinyon-Juniper Woodland 

7200 Recently Disturbed Other-Tree Cover 

7385 Great Plains Wooded Draw and Ravine Woodland 

7179 Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and Savanna 

  
 
Complete treatment 
 
The complete treatment combining thinning and prescribed fire is assigned the same 
feasibility as the thinning only treatment. Although prescribed fire is not commonly used as 
a first-entry tool in wet forests, it is often used to manage residual surface fuels after 
thinning. The assumption is also that thinning makes the subsequent prescribed fire safe 
and limits intensity so as not to kill the remaining trees. 
 
Treatment cost 
 
Treatment costs in USD ac-1 are communicated to the model as raster surfaces. The spatial 
resolution and alignment of the rasters should match the LANDFIRE (2019) data used 
elsewhere in the WIT analyses. Treatment costs are based on local expert opinion because 
current treatment cost models either do not consider landscape-scale variation (Calkin and 
Gebert 2006) or require detailed data on stand conditions that are not available for most 
the landscape (Fight et al. 2006). 
 
Thinning 
 
Per acre cost for the thin only treatment is approximated as a function of base treatment 
cost under ideal conditions (2,500 USD ac-1) with adjustments for distance from roads 
(Dcost) and slope steepness (Scost) in Eqn 1.  
 

𝐶𝑜𝑠𝑡 = 2,500 + 𝐷𝑐𝑜𝑠𝑡 + 𝑆𝑐𝑜𝑠𝑡      Equation 1 
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Cost increases with distance from roads > 800 m as specified in Eqn 2 such that the total 
cost of treatment increases to 10,000 USD ac-1 at four miles from the nearest road. 
  

Dcost(𝑥) = {
0,   𝑥 < 800 𝑚

1.34 ∗ (𝑥 − 800),   𝑥 ≥ 800 𝑚
     Equation 2 

 
Cost increases with slope > 40% as specified in Eqn 3 such that the total cost of treatment 
increases to 10,000 USD ac-1 at 200% slope. 
 

Scost(𝑥) = {
0,   𝑥 < 40 %

46.9 ∗ (𝑥 − 40),   𝑥 ≥ 40 %
     Equation 3 

 
This formulation suggests the base cost applies anywhere within 800 m of roads and less 
than 40% slope. Thinning cost is limited to a maximum of 10,000 USD ac-1 when the 
combined distance and slope adjustments push costs above this value. 
 
Prescribed fire 
 
Prescribed fire costs are assumed to cost a uniform 1,000 USD ac-1 based on a general 
estimate of planning, preparation, and implementation costs (J. White and B. Karchut, 
personal communication). 
 
Complete treatment 
 
Complete treatment costs are calculated as the sum of thinning and prescribed fire costs. 
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Appendix III: Performance Metrics Assessment Details 
 
Performance metrics and descriptions 
 
The full list of WIT performance metrics is presented in Table 14. A brief summary is 
provided next to explain why these metrics were calculated and what analysis methods 
were used (Figure 14). As a reminder, conditional metrics refer to the potential avoided 
impacts if the treated areas burn whereas expected metrics refer to the change in actuarial 
risk accounting for the likelihood of treated areas burning.   
 
The WIT water supply risk assessment and fuel treatment optimization modules provide 
map, GIS, and tabular products describing some elements of the expected watershed 
response and impacts to water supplies but calculating these metrics for a specific project 
requires considerable GIS skills. The first set of metrics (Table 14) are meant to quickly 
summarize key watershed hazards, like total avoided hillslope erosion and sediment load 
to streams, and the resulting impacts to water supplies, like total avoided sediment load 
and sediment impact costs. These metrics are all calculated using the risk assessment 
framework described in Figure 2. Additionally, the analysis presents lists of downstream 
water infrastructure and water stakeholders (utilities). The next set of metrics (Table 14) 
communicate the uncertainty around the core water supply impact measures – sediment 
load and sediment impact costs – due to uncertainty in post-fire rainfall. Both conditional 
and expected measures are provided for these metrics at 5th and 95th percentiles of rainfall 
erosivity to construct an approximate 90% prediction confidence interval. 
 
Basic descriptions of pre- and post-treatment fire behavior conditional on fire occurrence 
are presented next (Table 14). These measures are featured as histograms in the Peaks to 
People reports. 
 
To compare the relative effectiveness and cost-effectiveness of treatment units, an estimate 
of treatment cost is provided based on the modeling presented in Appendix II which is used 
to calculate the benefit-cost ratio (BCR) of treatment by dividing the expected reduction in 
sediment costs to water supplies by the treatment cost. The ordered rank of treatment 
units based on BCR is also provided for easy identification of high priority projects.   
 
The next section summarizes co-benefits related to wildlife and recreation (Table 14) using 
a simple overlay analysis to identify resources that overlap with the treatments. Avoided 
impacts to homes in the wildland-urban interface are summarized with both a simple count 
of the number of homes within 1 km of the treatment and a detailed avoided impact 
analysis described in the following section based on a quantitative model of home loss 
probability. 
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Table 14: WIT performance metrics. 

Attribute Description 

Area_ac Fuels Reduction/Forest Restoration (acres) 

cEro_Mg Conditional reduction in erosion (metric tons) 

eEro_Mg Expected reduction in erosion (metric tons) 

cToStrm_Mg Conditional reduction in sediment delivered to streams (metric tons) 

eToStrm_Mg Expected reduction in sediment delivered to streams (metric tons) 

cTI_Mg Conditional reduction in sediment delivered to water supplies (metric tons) 

eTI_Mg Expected reduction in sediment delivered to water supplies (metric tons) 

cTI_D Conditional reduction in sediment costs to water supplies ($) 

eTI_D Expected reduction in sediment costs to water supplies ($) 

DS_Infra Downstream infrastructure (comma-separated list) 

DS_Stake Downstream stakeholders (comma-separated list) 

cTI_Mg_05 Conditional reduction in sediment delivered to water supplies, 5th per. rainfall (metric tons) 

eTI_Mg_05 Expected reduction in sediment delivered to water supplies, 5th per. rainfall (metric tons) 

cTI_D_05 Conditional reduction in sediment costs to water supplies, 5th per. rainfall ($) 

eTI_D_05 Expected reduction in sediment costs to water supplies, 5th per. rainfall ($) 

cTI_Mg_95 Conditional reduction in sediment delivered to water supplies, 95th per. rainfall (metric tons) 

eTI_Mg_95 Expected reduction in sediment delivered to water supplies, 95th per. rainfall (metric tons) 

cTI_D_95 Conditional reduction in sediment costs to water supplies, 95th per. rainfall ($) 

eTI_D_95 Expected reduction in sediment costs to water supplies, 95th per. rainfall ($) 

Unburn_ac Pre-treatment predicted unburned area (ac) 

Surf_ac Pre-treatment predicted surface fire area (ac) 

Pass_ac Pre-treatment predicted passive crown fire area (ac) 

Act_ac Pre-treatment predicted active crown fire area (ac) 

tUnburn_ac Post-treatment predicted unburned area (ac) 

tSurf_ac Post-treatment predicted surface fire area (ac) 

tPass_ac Post-treatment predicted passive crown fire area (ac) 

tAct_ac Post-treatment predicted active crown fire area (ac) 

RedACF_ac Active Crown Fire Reduced (ac) 

TrtCost_D Model estimated treatment cost ($) 

BCR Benefit-Cost Ratio of treatment (Risk Reduction/Treatment Cost) 

Rank Ordered rank of planned treatment units based on BCR 

ParkOS_ac Parks and open space protected from wildfire (acres) 

WildHab_ac Crucial wildlife habitat protected from wildfire (acres) (tiers 1 & 2 from Colorado CHAT) 

Trail_mi Trails protected from wildfire (miles) 

WUI1km_n Homes within influence zone of treatments (homes) (from Caggiano et al. 2016) 

cHL_n Conditional reduction in home loss (homes) 

eHL_n Expected reduction in home loss (homes) 

cHL_D Conditional reduction in home loss ($) 

eHL_D Expected reduction in home loss ($) 

https://www.wafwachat.org/
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Home loss model 
 
The potential for fuel treatments to reduce structure loss is estimated using a model of 
home loss probability based on landscape characteristics. Price and Bradstock (2013) used 
multiple logistic regression to model home loss probability from structures exposed to the 
Black Saturday Fires in Australia and found that landscape characteristics, in contrast to 
fine-grained information on the home ignition zone (Cohen 2000), explained around 23% 
of variation in home loss. Their model predicts that the home loss increases with increasing 
proportion of crown fire activity and forest cover within a 1 km radius buffer around the 
home, the density of structures within a 50 m buffer radius around the home, and local 
slope. These findings are consistent with home loss studies in the US that suggest wildland 
urban interface disasters occur when extreme fire behavior close to a community 
overwhelms firefighting resources (Calkin et al. 2014) and that home loss is highest in 
areas of low housing density, which tend to have high proportions of natural vegetation 
nearby (Syphard et al. 2019). The low explanatory power of this model (r-squared = 0.23) 
suggests it is not appropriate for determining the fate of an individual structure. The model 
is instead used to estimate avoided structure loss and structure loss value across the entire 
analysis area assuming that the sum of marginal changes in home loss probability across 
many structures will result in an equivalent quantity of avoided home loss.  
 
Individual structure locations from Caggiano et al. (2016) are used to represent building 
locations across the analysis area. Each structure is attributed with the median value of 
owner-occupied housing units by US Census tract (2015). The probability of home loss 
conditional on wildfire exposure is calculated per Price and Bradstock (2013) as described 
in equations 1 and 2 with variable definitions in Table 15. 
 

𝑥 =  −2.352 + 0.068(𝐻𝐷) + 3.697(𝐶𝐹) + 1.935(𝐹𝐴) + 0.063(𝑆) + 1.317(𝐻𝐷 × 𝐶𝐹)  Equation 1 
 

𝑃 =  
𝑒𝑥

1+𝑒𝑥          Equation 2 

 
Conditional home loss value is calculated as the product of the median housing value and 
conditional probability of loss by structure. Expected home loss and home loss value are 
calculated using mean burn probability calculated within a 1 km radius around each home. 
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Table 15: Variable definitions, sources, and processing methods for the home loss model. 

Variable Definition Source and processing 
HD Housing density (frequency of 

homes) within a 50 m radius 
around the target structure 

Calculated with a focal neighborhood 
analysis of building locations from 
Caggiano et al. (2016) 

CF Proportion of area within a 1 km 
radius around the target structure 
burning as crown fire 

Active crown fire from FlamMap 
modeling in this study 

FA Proportion forested within a 1 km 
radius around the target structure 

Forest classified as ≥ 10% canopy 
cover from LANDFIRE (2019) 

S  Local slope in degrees Slope from LANDFIRE (2019) 
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Appendix IV: Installation instructions 
 
The Watershed Investment Tool (WIT) was developed in R version 3.5.3 (R Core Team 
2019). Given the nature of free and open source software to change over time, a 
distribution of this R version and all packages used in the WIT are provided so it will 
continue to function as intended into the future. No support will be provided for WIT use 
on other versions of R or the dependent packages. A simple graphical user interface is 
provided in the form of an HTML application (.hta) to allow non-technical users to progress 
through the scripted workflow without any knowledge of R. The graphical user interface 
will only work on Windows 7 and 10 operating systems. Acceptable computing 
performance will be achieved on machines with at least 8 GB RAM and a Core i3 processor 
or higher.  
  
The WIT is distributed in zipped file folder. Unzip the contents to your preferred location 
on a real hard drive (e.g., the C drive on your computer, an external hard drive, or a 
network drive maintained by your organization). The WIT will not function properly when 
stored and launched from a virtual drive (e.g., Box, Dropbox, OneDrive, Google Drive, etc.). 
The WIT contains two HTML applications and the supporting programs and files (Figure 
19). Rearranging the contents of the WIT or changing the names of the folders or files will 
cause it to malfunction. It is best for non-technical users to only operate the WIT through 
the graphical user interface (WIT.hta). This can be launched from its current location, or a 
shortcut can be created to launch it from the desktop or other location. 
 

 
Figure 19: Snapshot of the parent directory after unzipping. The WIT.hta is the graphical user interface. Double 
click to launch from this location or create a shortcut for your desktop. 

 
The graphical user interface (Figure 20) provides a web-like experience to progress 
through the sequential steps of performing a water supply risk assessment, optimizing fuel 
treatments to mitigate the risk, and evaluating the performance of a specific treatment 
plan. Inputs are flagged with green buttons and outputs are flagged with blue buttons. Grey 
buttons either open the reference materials provided at the top of the screen or they 
launch the R scripts that execute the analyses. 
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Figure 20: Graphical user interface for the WIT.  

 
The WIT is preconfigured for use in the Cache la Poudre and Big Thompson Watersheds in 
northern Colorado. Describing all the inputs for the analysis and associated mapping is 
beyond the scope of this manual. All data requirements are documented within the R 
scripts and template directory structure housed in the scripts folder (Figure 21). Advanced 
users are welcome to modify data sources as they see fit to update the WIT or apply it to a 
different geography (see license section below). The file map (File_map.xlsx) in the doc 
folder provides a full list of files in the WIT and their functions. In addition to the WIT, 
several pre-processing scripts are provided (tagged with “PP”) to document the fuel 
treatment data processing, fuelscape generation, fire modeling, and constraint modeling. 
This distribution of the WIT also includes the Colorado Forest Restoration Institute’s Risk 
Assessment and Decision Support Tool (tagged with “RADS”) to provide the ability to 
optimize risk reduction for multiple resources or assets (Gannon 2020). See the RADS 
manual for more details. 
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Figure 21: Scripts folder containing the R scripts and associated directory structure for the analysis inputs and 
outputs. 

 
License 
 
Copyright (c) 2020 Benjamin Michael Gannon, Colorado Forest Restoration Institute at 
Colorado State University. 
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to 
whom the Software is furnished to do so, subject to the following conditions: 
 
The above copyright notice and this permission notice (including the next paragraph) shall 
be included in all copies or substantial portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE. 


